Chapter Two uses two different data sets. The first one (used for Table 2.3) is longitudinal. It uses countries as units of analysis, and covers the 1960-1999 period in five-year intervals (1960-1964, 1965-1969, etc.). It has a maximum of 1,219 observations, 932 of which are included in the model in Table 2.3. The second one (used for Table 2.4) is cross-sectional. It uses “minorities at risk” (MAR) as units and measures variables over the 1990-2003 period.\(^1\) This dataset identifies 338 “politically-active communal groups in all countries with a current population of at least 500,000.” In Table 2.4, respectively 310 and 288 observations had enough data to be included in the model.

Both data sets are used to analyze the determinants of separatist conflict and separatist sentiment, the two dependent variables in Tables 2.3 and 2.4. The measurement of separatist conflict is adapted from the Peace Research Institute of Oslo’s (PRIO) measure of “domestic conflicts based on territorial incompatibility,” which refers to struggles over separatism and autonomy.\(^2\) PRIO provides the years during which such conflicts take place together with a measure of their intensity in terms of battle deaths. When a conflict has at least 25 battle deaths in a year and no more than 1,000 overall, it is classified as “minor.” An “intermediate” conflict has between 25 and 1,000 battle deaths per year with an accumulated total of more than 1,000. Finally, “wars” have at least 1,000 battle-related deaths per year. In the country dataset, I give these three levels of conflict values of 1, 2, and 3, and I enter the highest applicable value (including 0) for each five-year period.\(^3\) I chose this measure of intensity of conflict over the more common measure of onset because separatist efforts in Africa appear not only fewer but also more lukewarm than elsewhere.\(^4\) Because of the relative scarcity of separatist conflicts across space and time, this variable is oddly distributed with 1,099 observations scoring 0 and 120 positive ones. The consequent skewness contributes to the overall predictive weakness of the model, making it hard to establish the validity of the underlying theories and to ascertain the specificity of Africa.

One way around this problem is to consider secessions a statistical “rare event” and adjust the data set in ways that correct for this scarcity by selecting a sample of observations that includes all the positive ones and a random selection of those scoring 0 of about twice the size of the positive ones, resulting in a sample of about 330 observations. This is a solution proposed by Gary King and Langche Zeng.\(^5\) Doing so increases the variance of the dependent variable, while all information on actual

1 For details and data, see http://www.cidcm.umd.edu/inscr/mar/.
2 Gleditsch et al., “Armed Conflict…”
3 Using a dummy version of the variable, scoring 1 in any period of separatist activity, did not yield significantly different findings.
4 For works using the onset of conflict as the dependent variable, see Sambanis, “Partition…,” and Collier and Hoefller, “The Political Economy…”
separatist instances is included together with a representative sample of the non-separatist cases. I tried this method. It yielded similar results to those of the larger model.

In the minority dataset, I coded each group as to whether and how intensely it engaged in a separatist conflict over the period 1990-2003, along the 0-3 scale developed above from the PRIO data. Forty-eight groups qualified as separatist with at least minor violence since 1990.6

The measurement of separatist sentiment or preferences is adapted from the MAR data, which includes such a variable based on a qualitative study of each group by MAR researchers. This variable does not require any threshold of violence to score a positive value. It takes on values ranging from 0 (no separatist sentiment) to 3 (active separatist or autonomy movement), with 1 and 2 respectively indicating latent and historical separatist sentiments. For the country dataset, I calculated the sum of the separatist scores of all identified minorities. For example, Afghanistan has four such minorities. The Hazaras score 1 on the MAR separatism index and the three other ones (Pashtuns, Tajiks and Uzbeks) score 0. Consequently, Afghanistan as a whole receives a score of 1. In Angola, the Bakongo score 2, Cabinda 3 and the Ovimbundu 0. Angola then receives a score of 5. Because the MAR separatism data is only valid for the 1990s, I only use data from the 1990-1995 period with this dependent variable. In other words, this leads me to abandon the time dimension of the dataset and focus simply on a cross-national test of the theories. As a result there are only 143 observations in the “sentiment” model of Table 2.3.

Country Dataset

Model (1) in Table 2.3 is a Prais-Winsten regression, with heteroskedastic panel-corrected standard errors, 1st-order autocorrelation. The cross-sectional variable is “cow,” the country numeric code from the Correlates of War data set. The time variable is year (5-year increments).

The STATA command was:

```
xtpcse terrint africa lac gdp language allfailure priogovt transition postcoldwar mar pop, correlation(psar1) hetonly
```

The STATA results are:

```
Group variable: cow                               Number of obs  =    932
Time variable: year                                Number of groups =  153
Panels: heteroskedastic (unbalanced) Obs per group: min =  1
Autocorrelation: panel-specific AR(1)               avg = 6.091503
                           max =  8
Estimated covariances  =  153                      R-squared       =  0.1812
Estimated autocorrelations =  153                   Wald ch2(10)    = 134.61
Estimated coefficients =  11                       Prob > ch2       =  0.0000

-------------------------------------------------------------
                  Het-corrected
        |     Coef.  Std. Err.     z    P>|z|    [95% Conf. Interval]
-------------------------------------------------------------
          terrint |  -.4875161    .0765496   -6.37   0.000   -.6375504   -.3374817
```

6 Using a simple separatist-conflict dummy as dependent variable yielded similar results.
For model (2), the command and results are as follows:

```
regress sumsep africa lac gdp language plural allfailure mar size if year ==
1990, r
```

Linear regression Number of obs = 143
F(8, 134) = 4.53
Prob > F = 0.0001
R-squared = 0.4773
Root MSE = 4.169
| Robust
sumsep | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
africa | -4.054823 1.234053 -3.29 0.001 -6.495566 -1.614081
lac | -4.119175 .9389606 -4.39 0.000 -5.976276 -2.262075
gdp | -5.96e-07 .0000466 -0.01 0.990 -.0000927 .0000016
language | 3.411622 1.672001 2.04 0.043 .1046957 6.718548
plural | -1.104198 1.810675 -0.61 0.543 -4.685392 2.476996
allfailure | -1.858119 .6690178 -2.78 0.006 -3.18132 -0.5349188
mar | 2.271912 1.564175 1.45 0.149 -.8217539 5.365579
size | 3.14e-06 1.11e-06 2.82 0.006 9.38e-07 5.34e-06
_cons | 1.890367 1.679517 1.13 0.262 -1.431425 5.212159
-------------+--
```

The adjusted R-square is 0.4461.

List of variables used in the Country Dataset

terrint (dependent variable, model 1)
Highest level of intensity of territorial conflict in a given period (1=minor, 2=intermediate, 3=war). Source: PRIO.

sumsep (dependent variable, model 2)
Sum for each country of the separatism score of its minorities, as assessed by Minorotoes at Risk’s separatism index. Source: http://www.cidcm.umd.edu/inscr/mar/.

africa
Dummy variable. Takes the value of 1 for African countries; 0 otherwise.
**lac**
Dummy variable. Takes the value of 1 for Latin American and Caribbean countries; 0 otherwise.

**cow**
3-digit country code from Correlates of War.

**year**
first year of five-year period (e.g., 1995 for 1995-99)

**gdp**

Conversion ratios for the imputation of missing values in GDP. For the 943 observations which have values for RGDPCH but not for rpcgdpdol, the following ratios were used to predict the value of rpcgdpdol (this was used instead of regressing one on the other, which generates negative values). These predicted values were then added as observations in the variable GDP which is equal to rgdpch if available, or the above-mentioned predicted value, or some alternative ad hoc source for a few missing cases as indicated above. For example, for all values of RGDPCH below $500 which had missing values for rpcgdpdol, the predicted value of GDP is RGDPCH*(187/433), etc.

```
. su rgdpch rpcgdpdol if rgdpch<500
Variable | Obs Mean Std. Dev. Min Max
-------------+--
 rgdpch | 60 433.0162 54.84278 281.26 499.66
 rpcgdpdol | 30 187.5043 111.3222 84.72279 590.4184
```

```
. su rgdpch rpcgdpdol if rgdpch>500 & rgdpch<1000
Variable | Obs Mean Std. Dev. Min Max
-------------+--
 rgdpch | 717 551.9141 124.7345 374.51 642.12
 rpcgdpdol | 440 275.0446 176.8593 138.005 541.388
```


### Variables Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>rgdpch</td>
<td>1004</td>
<td>1410.482</td>
<td>286.8623</td>
<td>1000.02</td>
<td>1998.11</td>
</tr>
<tr>
<td>rpcgdpdfol</td>
<td>844</td>
<td>425.3947</td>
<td>177.26</td>
<td>148.5691</td>
<td>1547.079</td>
</tr>
<tr>
<td>rgdpch</td>
<td>1266</td>
<td>1343.278</td>
<td>713.841</td>
<td>177.7922</td>
<td>8398.532</td>
</tr>
<tr>
<td>rpcgdpdfol</td>
<td>1266</td>
<td>1343.278</td>
<td>713.841</td>
<td>177.7922</td>
<td>8398.532</td>
</tr>
<tr>
<td>rgdpch</td>
<td>1081</td>
<td>7198.738</td>
<td>1437.578</td>
<td>5000.09</td>
<td>9993.23</td>
</tr>
<tr>
<td>rpcgdpdfol</td>
<td>873</td>
<td>4564.669</td>
<td>2716.902</td>
<td>173.4685</td>
<td>16969.19</td>
</tr>
<tr>
<td>rgdpch</td>
<td>809</td>
<td>14182.46</td>
<td>2756.834</td>
<td>10006.15</td>
<td>19997.28</td>
</tr>
<tr>
<td>rpcgdpdfol</td>
<td>748</td>
<td>15723.45</td>
<td>6295.024</td>
<td>3081.983</td>
<td>34228.14</td>
</tr>
<tr>
<td>rgdpch</td>
<td>236</td>
<td>23209.7</td>
<td>3598.207</td>
<td>20000.82</td>
<td>43989.44</td>
</tr>
<tr>
<td>rpcgdpdfol</td>
<td>236</td>
<td>30413.66</td>
<td>8036.664</td>
<td>15131.76</td>
<td>56372</td>
</tr>
</tbody>
</table>

### Variables Description

**maleseced2**  
Male secondary school gross enrollment ratios, extrapolated from “maleseced”. Source: WDI.

**oil**  
Dummy variable for oil-exporting countries.

**language**  
Linguistic fractionalization index. Source: Alesina et al., 2002.

**plural**  
Size of largest ethno-linguistic group in a country, in decimals. Source: Fearon and Laitin.

**allfailure**  
Index of state failure. This variable is actually a measure of state strength. The higher the number, the stronger the state. Thus, the sign of the coefficient was inverted in the
tables to more intuitively capture the effects of failure itself. The variable “failure” is first generated by creating the principal component of the variables “law and order”, “bureaucratic quality” and “government stability” from the PRS data set. “failure” is then regressed on the absolute value of the “polity” variable from the Polity IV dataset. “allfailure” is either the value for “failure” or, if it is missing, the predicted value from the regression on polity. The coefficient of this variable is likely inflated by endogeneity of failure to separatist conflict.

**priogovt**
Non-separatist political violence; measures the number of years of non-separatist political violence (such as violence over the control of central government) in a country over each five-year period. Source: PRIO.

**polity2**
Index of the democratic nature of a regime, from authoritarian (-10) to democratic (10). Source: Polity IV dataset.

**transition**
To measure regime transitions, I created a dummy variable which takes on a value of 1 when a country’s political system is ranked as between -3 and 3 on the “Polity 2” variable from the Polity IV data set. The “Polity 2” variable ranges from -10 (authoritarian regimes) to 10 (democracies). Values close to 0 on the “Polity 2” variable capture regimes which are neither authoritarian nor democratic. Although these would include regimes in transition, they can also be stable regimes which have characteristics of both authoritarianism and democracy. As a result, although it is unclear why these regimes would reduce the likelihood of separatism, this may not necessarily be a repudiation of the underlying hypothesis.

**postcoldwar**
Dummy variable, taking value of 1 for all years after 1989.

**mar**
% of a country’s population listed as “minority at risk” by the Minorities at Risk project. Used as a measure of repressive nature of government. Source: MAR.

**age**
Country age: year of data – year of independence.

**pop**
in millions

**size**
country size, in million square miles.

**split**

7 For data and explanations, see [http://www.cidcm.umd.edu/inscr/polity/](http://www.cidcm.umd.edu/inscr/polity/).
dummy variable for territorial discontinuity.

**Group Dataset**

Both models (1) and (2) in Table 2.4 are OLS regressions with heteroskedasticity-consistent standard errors. The data covers the period 1990 to 2003. Some variables are averaged or summed over the period; others are measured at the beginning of the period and labeled with the suffix “90.” For model (1), the STATA command and results were:

```
regress terrint africa lac gdp90 maleseced90 oilandcoal groupcon belief language discrimination90 allfailure90 autlost autonregion size ,r
```

Linear regression                                      Number of obs = 310
F( 13, 296) = 3.97
Prob > F = 0.0000
R-squared = 0.2546
Root MSE = 0.68625

|                 | Coef.  | Std. Err. | t     | P>|t|   | [95% Conf. Interval] |
|-----------------|--------|-----------|-------|-------|----------------------|
| terrint         | -0.391 | 0.155     | -2.51 | 0.013 | -0.697 to -0.085     |
| africa          | -0.408 | 0.107     | -3.82 | 0.000 | -0.618 to -0.198     |
| lac             | 3.52   | 0.63      | -0.60 | 0.548 | -0.005 to 0.005      |
| gdp90           | -0.001 | 0.003     | -0.60 | 0.548 | -0.007 to 0.005      |
| maleseced90     | 0.093  | 0.71      | 1.22  | 0.223 | -0.163 to 0.349      |
| oilandcoal      | 0.039  | 0.032     | 1.22  | 0.223 | -0.024 to 0.103      |
| groupcon        | 0.032  | 0.031     | 1.06  | 0.288 | -0.021 to 0.107      |
| belief          | 0.27   | 0.194     | 1.39  | 0.167 | -0.113 to 0.651      |
| language        | 0.098  | 0.041     | 2.38  | 0.018 | -0.006 to 0.202      |
| allfailure90    | -0.12  | 0.041     | 2.89  | 0.004 | -0.204 to 0.003      |
| autlost         | 0.34   | 0.070     | 4.85  | 0.000 | 0.210 to 0.475       |
| autonregion     | -0.34  | 0.13     | -2.56 | 0.011 | -0.606 to -0.075     |
| size            | -0.00  | 0.00      | -0.00 | 0.999 | -0.005 to 0.005      |
| _cons           | -0.18  | 0.190     | -0.94 | 0.351 | -0.550 to 0.190      |

For model (2), the STATA command and results were:

```
regress separatism africa lac maleseced90 oilandcoal ecdiffabs regional group
> pcon language diaspora allfailure90 autlost autonregion bordering pop ,r
```

Linear regression                                      Number of obs = 288
F( 14, 273) = 33.55
Prob > F = 0.0000
R-squared = 0.438
Root MSE = 0.999

|                 | Coef.  | Std. Err. | t     | P>|t|   | [95% Conf. Interval] |
|-----------------|--------|-----------|-------|-------|----------------------|
| separatism      | -0.69  | 0.209     | -3.30 | 0.001 | -1.104 to -0.279     |
| africa          | -1.05  | 0.198     | -5.31 | 0.000 | -1.441 to -0.661     |
| lac             | -0.00  | 0.003     | -0.24 | 0.812 | -0.007 to 0.007      |
| maleseced90     | 0.07   | 0.041     | 1.70  | 0.084 | -0.306 to 0.446      |
| oilandcoal      | 0.036  | 0.041     | -0.88 | 0.377 | -0.119 to 0.202      |
| ecdiffabs       | 0.036  | 0.041     | -0.88 | 0.377 | -0.119 to 0.202      |
regional |  .6103697  .1784189  3.42  0.001  .2591179  .9616215
groupcon |  .0684163  .074272  0.92  0.358  -.0778023  .2146349
language |  .0720689  .2764235  0.26  0.795  -.4721238  .6162616
diaspora |  .1032542  .145864  0.71  0.480  -.1839071  .3904155
allfailure90 |  .1431242  .0602133  2.38  0.018  .0245827  .2616657
autonregion |  .1950642  .174969  1.11  0.266  -.1493957  .5395241
bordering |  -.0358025  .0489331  -0.73  0.465  -.1321366  .0605316
pop |  3.10e-07  2.90e-07  1.07  0.285  -.2.60e-07  8.81e-07
_cons |  .5179254  .334643  1.55  0.123  -.1408835  1.176734
------------------------------------------------------------------------------

List of Variables in the Group Dataset

terrint (dependent variable for model 1)
This variable is a measure of the occurrence and intensity of separatist conflict, on a scale from 0 to 3, measured for the period 1990-2003. Source: PRIO

separatism (dependent variable in model 2)
This variable measures the strength of separatist sentiment among subnational groups, on a scale from 0 to 3, for the 1990s. Source: MAR.

africa
Dummy variable, takes value 1 if group is African

lac
Dummy variable, takes value 1 if group is Latin American.

gdp90
Per capita GDP of the group’s country, measured as of 1990 (same methodology as country dataset)

maleseced90

oilandcoal
Dummy variable. Takes the value of 1 if group’s region harbors oil or coal. Note that this variable is coded using MAR description and author’s knowledge for identification of the region where each group is located. Data source used for resources is USGS minerals map (last modified November 2002) located at: http://minerals.usgs.gov/minerals/pubs/country/maps/
Also used University of Texas map website to access detailed maps of each country in order to determine which region any given group was located in: http://www.lib.utexas.edu/maps/.
Groups are coded as having a resource when USGS defines a resource as undeveloped but significant (these resources appear in parentheses on the USGS maps). Groups that have these resources in their region are: Southerners in Chad, Somalis in Ethiopia, Nuba and Southerners in Sudan, Tonga in Zambia, Issaq in Somalia, and Diolas in Senegal.
The USGS site did not have a map for China. Authors substituted a 1983 CIA map of China’s fuel, power, minerals and metals. This map is found on the UT map website at http://www.lib.utexas.edu/maps/middle_east_and_asia/china_fuels_83.jpg

cediffabs
Absolute value of group’s economic differential score. Source: MAR.

regional
Dummy variable; 1 if the group has a region where it is predominant. Source: MAR.

groupcon
Group concentration, from 0 (widely dispersed) to 3. Source: MAR.

belief
Group’s belief specificity compared to rest of the country. Source: MAR.

custom
Group’s customs specificity compared to rest of the country. Source: MAR.

lang
Group’s linguistic specificity compared to rest of the country. Source: MAR.

race
Group’s racial specificity compared to rest of the country. Source: MAR.

poppercent
National population share of group. Source: MAR.

language

diaspora
Dummy version of MAR emigration variable, where all values greater than zero equal 1. Missing values imputed by authors to the best of our knowledge based on presence of kin abroad. Measured in previous period.

dispersion
Transnational dispersion of kindred groups. Source: MAR. Note: Countries separated by water distances of less than 200 miles should be considered "adjoining." Only the countries that are adjoining/neighbors of the country in question are coded.

discrimination90
Mean of economic and political discrimination variables, 1980-1990 (Source: MAR).

allfailure90
Same as in Country Dataset

**politrights90**
Freedom House score on political rights for 1990 or first avail.

**autlost**
Index of Political Autonomy Grievances. Source: MAR.
Missing Values: -99
A composite index for groups who have lost autonomy or undergone a transfer of control from one country to another. Values range from “0” (no historical autonomy) to “6.0”. The index is constructed by adding the weights for “Magnitude of Change” and “Group Status Prior to Change,” subtracting one, and dividing by the “Year-of Loss” weight. Weights were assigned using information coded below plus supplemental information (see Gurr, “Why Minorities Rebel”, pg. 199, for more information).
These are the weights:

<table>
<thead>
<tr>
<th>Year of Loss of Autonomy or Change</th>
<th>Magnitude of Change</th>
<th>Group Status Prior to Transfer of Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Weight</td>
<td>Type</td>
</tr>
<tr>
<td>1980-95</td>
<td>5</td>
<td>Loss of long-term autonomy</td>
</tr>
<tr>
<td>1960-79</td>
<td>4</td>
<td>Loss of short-term autonomy (&lt; 10 years) under colonial rule</td>
</tr>
<tr>
<td>1940-59</td>
<td>3</td>
<td>Transfer only centralized authority, religious or secular</td>
</tr>
<tr>
<td>1900-39</td>
<td>2</td>
<td>Province in another state or colonial territory</td>
</tr>
<tr>
<td>pre-1900</td>
<td>1</td>
<td>Part of larger segment of group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autonomous but acephalous or</td>
</tr>
</tbody>
</table>

**autonregion**
Auton2 variable from MAR. Scores 1 if group members govern one or more regions with at least limited autonomy, otherwise 0. Those that were missing were inferred by the authors—that includes codings for USSR and Czechoslovakia (they had been discontinued when the variable was created). Source: MAR.
**bordering**
Number of Segments in Adjoining Countries (MAR: numsegx). This variable contains the number of adjoining countries where there are segments of the group.

**pop**
Country population 1990s in 1,000s

**size**
Country size in square miles

**inpieces**
Dummy for country with non-contiguous territory